Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry.

نویسندگان

  • Carmen S Guzmán Calcina
  • Adelaide de Almeida
  • José R Oliveira Rocha
  • Felipe Chen Abrego
  • Oswaldo Baffa
چکیده

Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo and experimental relative dose determination for an Iridium-192 source in water phantom

Theoretical and experimental studies have been applied for dosimetric parameters determination of the brachytherapy sources (1-3). Usually, Monte Carlo method has been used to define such quantities as the anisotropy dose function, the radial dose function, and the dose calculation close to the source in brachytherapy (4-6). Ir source is used widely in brachytherapy to treat localized tumors ne...

متن کامل

Treatment planning study of the 3D dosimetric differences between Co-60 and Ir-192 sources in high dose rate (HDR) brachytherapy for cervix cancer

PURPOSE To evaluate whether Co-60 is equivalent to Ir-192 for HDR cervical brachytherapy, through 3D-DVH dose comparisons in standard and optimised plans. Previous studies have only considered 2D dosimetry, point dose comparisons or identical loading. Typical treatment times and economics are considered. MATERIAL AND METHODS Plans were produced for eight cervix patients using Co-60 and Ir-192...

متن کامل

Lithium formate EPR dosimetry for accurate measurements of absorbed dose in radiotherapy

Lithium formate has shown to be a material with properties suitable for electron paramagnetic resonance (EPR) dosimetry, among them up to 7 times higher sensitivity compared to alanine, which is a well-established EPR detector material for dose determinations in radiotherapy. The aim of this thesis was to further investigate the properties of lithium formate and develop the dosimetry system tow...

متن کامل

Evaluation of 101Rh as a brachytherapy source

PURPOSE Recently a number of hypothetical sources have been proposed and evaluated for use in brachytherapy. In the present study, a hypothetical (101)Rh source with mean photon energy of 121.5 keV and half-life of 3.3 years, has been evaluated as an alternative to the existing high-dose-rate (HDR) sources. Dosimetric characteristics of this source model have been determined following the recom...

متن کامل

Applicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film

Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR) brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 2005